Concentration profiles near an activated enzyme.
نویسندگان
چکیده
When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.
منابع مشابه
Application of a New Self-Cleaning Filter for Colored Wastewaters Treatment Using Laccase Enzyme Immobilized on Activated CARBON powder and fiber
The objective of this work is investigation of the adsorption and decomposition of Reactive Blue 19 from industrial wastewaters using laccase enzyme immobilized on activated carbon powder and fiber as adsorbent. Time, pH, temperature, stirring rate, the amount of the adsorbent, dye initial concentration, solution flow rate in the column and column height were studied as key operating parame...
متن کاملTextural and Structural Characterizations of Mesoporous Chitosan Beads for Immobilization of Alpha-Amylase: Diffusivity and Sustainability of Biocatalyst
In the present study, textural and structural characterizations of chitosan bead for immobilization of alpha amylase were studied in detail by N2 adsorption–desorption, Microspore Analysis (MP), Barrett–Joyner–Halenda (BJH) plots and Field Emission Scanning Electron Microscope (FESEM) observations. Pore structure observation revealed chemical activation of chitosan bead by glutaralde...
متن کاملAn Asymptotic Analysis of Intracellular Signaling Gradients Arising from Multiple Small Compartments
Abstract. Intracellular signaling gradients naturally arise through a local activation of a diffusible signaling molecule, e.g. by a localized kinase, and a subsequent deactivation at a distant cellular site, e.g. by a cytosolic phosphatase. Here, we consider a spherical cell containing a finite number of small spherical compartments where a signaling molecule becomes activated by a localized e...
متن کاملNumerical analysis of microwave assisted thermocatalytic decomposition of methane
A comprehensive 3D coupled mathematical model is developed to study the microwave assisted thermocatalytic decomposition of methane with activated carbon as the catalyst. A simple reaction kinetic model for methane conversion (accounting for catalyst deactivation) is developed from previously published experimental data and coupled with the governing equations for the microwaves, heat transfer,...
متن کاملEffect of Conjugation of Activated Glutaraldehyde-Nanochitosan with L-Asparaginase as an Anti Cancer Enzyme on its Stability and Physicochemical Properties
Introduction: The bacterial Asparaginase is used in the treatment of asparagine-dependent tumors, particularly lymphatic sarcoma and acute lymphoblastic leukemia. However, the instability of the enzyme increases the number of injections that are accompanied by high immune responses. The aim of this study was to investigate the conjugation of L-asparaginase with nanochitosan glutaraldehyde (NCG)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 38 شماره
صفحات -
تاریخ انتشار 2008